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Abstract We study the expansion properties of the contracting Lorenz flow introduced by
Rovella via thermodynamic formalism. Specifically, we prove the existence of an equilib-
rium state for the natural potential ϕ̂t (x, y, z) := −t logJ cu

(x,y,z) for the contracting Lorenz
flow and for t in an interval containing [0,1]. We also analyse the Lyapunov spectrum of the
flow in terms of the pressure.

Keywords Singular-hyperbolic attractor · Lorenz-like flow · Thermodynamic formalism ·
Lyapunov exponents · Multifractal spectra

1 Introduction

The Lorenz flow [28] is one of the key examples in the theory of dynamical systems due to
the chaotic nature of its dynamics, its robustness and its connection with hydrodynamical
systems. The Lorenz attractor, a ‘strange attractor’ with a characteristic butterfly shape, has
extremely rich dynamical properties which have been studied from a variety of viewpoints:
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topological, geometric and statistical, see [4, 44]. Part of the reason for the richness of the
Lorenz flow is the fact that it has an equilibrium, i.e., a fixed point, which is accumulated by
regular orbits (orbits through points where the corresponding vector field does not vanish)
which prevents the flow from being uniformly hyperbolic. Indeed it is one of the motivating
examples in the study of non-uniformly hyperbolic dynamical systems [31]. It is also robust
in the sense that nearby flows also possess strange attractors with similar properties. The
Lorenz equations can be studied using geometric models of the Lorenz flow, see [2, 22]. It
was shown by Tucker [45] that the Lorenz equations do indeed support a geometric Lorenz
flow.

The classical geometric Lorenz flow is expanding. This corresponds to the Lyapunov
exponents at the origin, λs and λu, the stable and unstable exponents respectively, hav-
ing λu + λs > 0. A Rovella-like attractor [41] is the maximal invariant set of a geometric
flow whose construction is very similar to the one that gives the geometric Lorenz attrac-
tor, [2, 4, 22], except for the fact that the eigenvalue relation λu + λs > 0 there is replaced
by λu + λs < 0. As in the case for the geometric Lorenz attractor, a Rovella attractor has
a global cross section: a line � ⊂ R

3, and a first return map f̃ defined on R
3 \ � that pre-

serves a one-dimensional foliation which is contracted under the action of f̃ . Thus, as in
the case of the geometrical model for the Lorenz flow, it is possible to study the dynamics
of a Rovella flow through a 1-dimensional map obtained quotienting though the leaves of
this contracting foliation. Unlike the one-dimensional Lorenz map obtained from the usual
construction of the geometric Lorenz attractor, a one-dimensional Rovella map has a criti-
cality at the origin, caused by the eigenvalue relation λu +λs < 0. In Fig. 3 below we present
some possible “Rovella one-dimensional maps” obtained through quotienting out the stable
direction of the return map to the global cross-section of the attractor. In Sect. 3 we explain
this procedure.

In this paper we will study the geometric model of the Rovella-like attractor from the
point of view of thermodynamic formalism. This theory studies the multifractal properties
of the system (see [35]), providing precise characterisations of the dimension theory, as well
as giving insight into the statistical properties of the system. In the study of thermodynamic
formalism, one takes a dynamical system (fs)s : X → X and a relevant potential ϕ : X → R

and studies the statistical properties of the system through the properties of the pressure and
the equilibrium states of the triple (X, (fs)s, ϕ). This theory was developed for hyperbolic
dynamical systems by Sinai, Ruelle and Bowen [10, 42, 43] in the context of Hölder poten-
tials on hyperbolic dynamical systems, and has mainly been applied to Axiom A systems
and Anosov diffeomorphisms, see e.g. [6, 26].

The potentials which tell us most about the system involve the Jacobean of the flow/map.
For discrete smooth conformal systems one would consider ϕ = log |Df |. Knowledge
of the pressure and equilibrium states with respect to the family tϕ, the family of ‘nat-
ural/geometric’ potentials, give us very fine information on the expansion properties of the
system. This is the Lyapunov spectrum. For discrete uniformly hyperbolic systems the the-
ory of thermodynamic formalism is already fairly well developed, see for example [33, 46].
However, for discrete conformal non-uniformly hyperbolic dynamical systems the theory
is currently seeing a lot of activity, for example [12, 13, 20, 21, 24, 25, 32, 38, 40]. In
the case of flows, thermodynamic formalism has been studied in the hyperbolic case in
[8–10, 14, 36, 48]. In the non-uniformly hyperbolic case, the main contribution was made
by Barreira and Iommi [7] who considered thermodynamic formalism for suspension flows
over countable Markov shifts.

To understand the Jacobean for the Lorenz flow we note that the tangent space can be split
into three directions: the flow direction, which has neutral expansion, the expanding/unstable
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direction and the contracting/stable direction. The study of the Lyapunov spectrum in the
Rovella flow case is particularly complicated since, in contrast to the expanding Lorenz
case, we have to deal with points where a derivative is zero.

The interesting part of the dynamics is in the expanding part of the attractor, so we con-
sider the Jacobean restricted to the expanding direction. This situation can be modelled by
a suspension flow over a countable Markov shift as in [7], but our approach uses a simpler
suspension flow allied to the results of Iommi and Todd [24, 25]. (Note that in [24, 25] a
countable Markov shift was used to produce the equilibrium states and information on the
Lyapunov spectra.) Our analysis captures the points which are typical for the physical mea-
sure as well as for many other points captured by nearby measures. As mentioned above,
we use the common approach (see [5, 19, 23, 29–31]) of analysing Lorenz-like flows by
taking Poincaré sections in such a way that we obtain a one-dimensional map. Note that our
results hold for a larger class of maps than just the Rovella type of Lorenz flow. We consider
flows which have a Poincaré section with the dynamics of maps considered in the appendix
of [24].

2 The Main Results

As sketched in the introduction and explained in greater detail below, given a flow f̂ =
(f̂s)s ⊂ F̂ and some t ∈ R, we prove the existence of an equilibrium state for the potential
ϕ̂t (x, y, z) := −t logJ cu

(x,y,z) where J cu
(x,y,z) is the Jacobean of f̂ at (x, y, z) in the unstable

direction. Here F̂ includes the contracting Lorenz flow introduced in [41]. The set of poten-
tials {ϕ̂t (x, y, z) : t ∈ R} is the natural class to consider for these maps. Indeed, analysis of
these potentials also allows us to express the Lyapunov spectrum of the flow in terms of the
pressure. Recall that a contracting Lorenz flow f̂ is a flow with a unique singularity at the
origin 0, defined in a compact neighbourhood C of 0 satisfying the following properties:

(1) the restriction of the flow to a small neighbourhood Q ⊂ Q ⊂ C is a linear flow L with
a unique singularity at 0,

(2) the eigenvalues λi, 1 ≤ i ≤ 3, of DL(0) are all real and satisfy −λ2 > −λ3 > λ1 > 0.

It was proved in [41] that, under certain additional conditions, the maximal positive f̂ -
invariant set � ⊂ Q is a transitive attractor.

In order to give our main results for these systems we first need to introduce some ba-
sic notions from thermodynamic formalism. For references on the general theory, see for
example [10, 14, 26, 35].

2.1 Thermodynamic Formalism

We begin by giving definitions for discrete time dynamical systems f : X → X, and will
then generalise to the flow case. We let

M = M(f ) := {
measures μ : μ ◦ f −1 = μ and μ(X) = 1

}
.

Given a potential ϕ : X → [−∞,∞], the pressure of ϕ with respect to f is defined as

P (ϕ) = P (f,ϕ) := sup

{
h(μ) +

∫
ϕ dμ : μ ∈ M and −

∫
ϕ dμ < ∞

}
,
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where h(μ) denotes the measure theoretic entropy of f with respect to μ. As in [26], the
quantity h(μ) + ∫

ϕ dμ is referred to as the free energy of μ with respect to (X,f,ϕ).
A measure μ ∈ M maximising the free energy, i.e., with h(μ) + ∫

ϕ dμ = P (ϕ), is called
an equilibrium state.

Similarly for a flow f̂ , we define the set of f̂ -invariant measures as

M = M(f̂ ) :=
{

measures μ̂ : μ̂(f̂ −1
s (A)) = μ̂(A) for all s ≥ 0 and μ̂(X̂) = 1

}
.

Moreover, for a potential ϕ̂ : X̂ → R, the pressure of (X̂, f̂ , ϕ̂) is defined as

P (f̂ , ϕ̂) := sup

{
h(f̂ , μ̂) +

∫
ϕ̂ dμ̂ : μ̂ ∈ M(f̂ ) and −

∫
ϕ̂ dμ̂ < ∞

}
.

(For more details of the entropy of flows, see Sect. 5, in particular (17).)
For a flow (f̂s)s : X̂ → X̂ in our class F̂ , as in [5, 30, 31] at each point (x, y, z) ∈ R

3,
the tangent space for the flow f̂ has a splitting Ecu

x ⊕ Es
x where Es

x is tangent to the stable
direction and Ecu

x is tangent to the centre unstable direction (see Sect. 3 for more details).
We are interested in the potential

ϕ̂t (x, y, z) := −t logJ cu
(x,y,z) (1)

which is the Jacobean of the differential in the centre unstable direction at the point (x, y, z).
This potential gives rise to a natural class of equilibrium states, which can be seen as select-
ing out the sets in R

3 with different rates of asymptotic expansion by the flow (see also
Theorem B). For the following theorem, our first main result for contracting Lorenz flows,
we consider this potential for t ∈ (t−, t+). The values of t− ≤ 0 and t+ ≥ 1 are given below
in (14).

Theorem A Let f̂ ∈ F̂ . Then for all t ∈ (t−, t+), there is an equilibrium state μ̂t for
ϕ̂t (x, y, z).

The set Î ⊂ R
3, defined more precisely later, is the set on which the flow f̂ is defined.

Given a potential ϕ̂ : Î → R, and α ∈ R, let

Kϕ̂(α) :=
{
(x, y, z) ∈ Î : lim

u→∞
1

u

∫ u

0
ϕ̂(f̂s(x, y, z)) ds = α

}

and

Kϕ̂′ :=
{
(x, y, z) ∈ Î : lim

u→∞
1

u

∫ u

0
ϕ̂(f̂s(x, y, z)) ds does not exist

}
.

In our second main theorem for contracting Lorenz flows, we take K(α) := K logJ cu
(α).

The Lyapunov spectrum of (Î , f̂ ) is the map

α �→ Lf̂ (α) := dimH (K(α)),

where dimH denotes the Hausdorff dimension of a set.
In our analysis of Lf̂ , we will use the potentials ϕ̂t , for certain parameters t ∈ R, and

their equilibrium states. The flows we consider and the potentials ϕ̂t have a natural relation
with piecewise C2 maps f on an interval I and the natural potentials

ϕt (x) := −t log |Df (x)|. (2)
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Often it can be shown that an equilibrium state for one such potential ϕ1 is an absolutely
continuous invariant probability measure (acip) μac . This is also an SRB measure.

Defining, for a measure μ ∈ M, the Lyapunov exponent of (I, f,μ) by

λ(μ) :=
∫

log |Df | dμ,

any equilibrium state μt for ϕt therefore satisfies

h(μt ) − tλ(μt ) = P (ϕt ).

We also define the pressure function:

p(t) := P (−t log |Df |).
In the following theorem, we give a relation between Lyapunov spectrum and the pressure

function on a certain domain (α1, α2) ⊂ R which is defined later in (15). Note that in general
the interval (α1, α2] contains the Lyapunov exponents of both the SRB measure and the
measure of maximal entropy. We restrict our analysis to a subset of maps F̂ac ⊂ F̂ , which
will be defined below.

Theorem B Let f̂ ∈ F̂ac . Then for all α ∈ (α1, α2), the Lyapunov spectrum satisfies the
following relation

Lf̂ (α) − 2 = 1

α
inf
t∈R

(p(t) + tα) = 1

α
(p(t) + tαα) ,

where tα is such that Dp(tα) = −α.

Remark 1 Note that it can be shown that for potentials ϕt and ϕ̂t , with corresponding equi-
librium states μt and μ̂t , we have Lf̂ (α)− 2 = h(μtα )

α
= h(μ̂tα )

α
for α and tα as in Theorem B.

Moreover, μ̂tα (R
3 \ K(α)) = 0.

We will prove Theorems A and B by first reducing the study of maps in F̂ to a class of
maps on the unit square and then reducing further to a class of maps on the unit interval.
This is explained in the following two sections.

3 Construction of a Rovella Flow

In this section we will consider a class of three dimensional flows which will be defined
axiomatically. To show that these axioms are verified in the geometric contracting Lorenz
models we give a detailed construction of this model. This construction can also be found in
for example [4, 19, 41].

We first analyse the dynamics in a neighbourhood of the singularity at the origin, and
then we complete the flow, imitating the butterfly shape of the original Lorenz flow.

We start with a linear system (ẋ, ẏ, ż) = (λ1x,λ2y,λ3z), with λi , 1 ≤ i ≤ 3 satisfying the
relations

−λ2 > −λ3 > λ1 > 0, β > � + 3, β := −λ2

λ1
, � := −λ3

λ1
. (3)
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This vector field will be considered in the cube [−1,1]3. For this linear flow, the trajec-
tories are given by

f̂s(x0, y0, z0) = (x0e
λ1s , y0e

λ2s , z0e
λ3s), (4)

where (x0, y0, z0) ∈ R
3 is an arbitrary initial point near p = (0,0,0).

Now let 	 := {(x, y,1) : |x| ≤ 1/2, |y| ≤ 1/2} and consider

	− := {
(x, y,1) ∈ 	 : x < 0

}
, 	+ := {

(x, y,1) ∈ 	 : x > 0
}

and

	∗ := 	− ∪ 	+ = 	 \ �, where � := {
(x, y,1) ∈ Ĩ : x = 0

}
.

	 is a transverse section to the linear flow and every trajectory crosses 	 in the direction
of the negative z axis.

Consider also 	̃ := {(x, y, z) : |x| = 1} = 	̃− ∪ 	̃+ with 	̃± := {(x, y, z) : x = ±1}. For
each (x0, y0,1) ∈ 	∗ the next time s > 0 such that f̂s(x0, y0,1) ∈ 	̃ is given by

s(x0) := − 1

λ1
log |x0| (5)

which depends on x0 ∈ 	̃∗ only and is such that s(x0) → +∞ when x0 → 0.
Hence, using (5), we get (where sgn(x) := x/|x| for x �= 0)

f̂s(x0)(x0, y0,1) = (
sgn(x0), y0e

λ2·s(x0), eλ3·s(x0)
) = (

sgn(x0), y0|x0|β, |x0|�
)
.

Consider L : 	∗ → 	̃± defined by

L(x, y,1) := (
sgn(x), y|x|β, |x|�). (6)

Clearly each segment 	∗ ∩ {x = x0} is taken by L to another segment 	̃± ∩ {z = z0} as
sketched in Fig. 1.

It is easy to see that L(	±) has the shape of a cusp triangle with a vertex (±1,0,0), a
cusp point at the boundary of the triangle. Since L is a linear flow, it preserves the vertical

Fig. 1 Behaviour near the origin
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foliation F s of 	 whose leaves are given by the lines x = x0. We shall further assume that
L(	±) are uniformly compressed in the y-direction.

3.1 The Random Turns Around the Origin

To imitate the random turns of a regular orbit around the origin and obtain a butterfly shape
for our flow, we proceed as follows.

Recall that the fixed point p at the origin is hyperbolic and so its stable Ws(p) and
unstable Wu(p) manifolds are well defined, [34]. Observe that Wu(p) has dimension one
and so it has two branches, Wu,±(p) and Wu(p) = Wu,+(p) ∪ {p} ∪ Wu,−(p).

The sets 	̃± should return to the cross section 	 through a flow described by a suitable
composition of a rotation R±, an expansion E±θ and a translation T±.

The rotation R± has axis parallel to the y-direction, which is orthogonal to the x-direction
(which is parallel to the local branches Wu,±(p)). More precisely it is such that if (x, y, z) ∈
	̃±, then

R±(x, y, z) =
⎛

⎝
0 0 ±1
0 1 0

±1 0 0

⎞

⎠ . (7)

The expansion occurs only along the x-direction, so the matrix of Eθ is given by

E±ρ(x, y, z) =
⎛

⎝
ρ 0 0
0 1 0
0 0 1

⎞

⎠ (8)

with ρ · ( 1
2 )� < 1. This condition is to ensure that the image of the resulting map is contained

in 	.
The translation T± : R

3 → R
3 is chosen such that the unstable direction starting from the

origin is sent to the boundary of 	 and the image of both 	̃± are disjoint. These transforma-
tions R±,E±ρ, T± take line segments 	̃± ∩ {z = z0} into line segments 	 ∩ {x = x1}, and
so does the composition T± ◦ E±ρ ◦ R±.

This composition of linear maps describes a vector field in a region outside [−1,1]3 in
the sense that one can use the above matrices to define a vector field V such that the time
one map of the associated flow realises T± ◦ E±ρ ◦ R± as a map 	̃± → 	. This will not be
explicit here, since the choice of the vector field is not really important for our purposes.

The above construction allows us to describe, for each s ∈ R, the orbit fs(x) of each
point x ∈ Ĩ : the orbit will start following the linear field until 	̃± and then it will follow V

coming back to 	 and so on. Let us denote by

B := {f̂s(x) : x ∈ 	,s ∈ R
+}

the set where this flow acts. The geometric contracting Lorenz flow is then the couple (B, f̂s)

defined in this way.
The Poincaré first return map will thus be defined by f̃ : 	∗ → 	 as

f̃ (x, y) =
{

T+ ◦ E+ρ ◦ R+ ◦ L(x, y,1) for x > 0

T− ◦ E−ρ ◦ R− ◦ L(x, y,1) for x < 0
(9)

The combined effects of T± ◦ R± and L on lines implies that the foliation F s of 	 given
by the lines 	 ∩ {x = x0} is invariant under the return map. In other words, we have
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Fig. 2 A Rovella flow

(�) for any given leaf γ of F s , its image F(γ ) is contained in a leaf of F s , and the condition
β > � + 3 guarantees that F s is a C3-foliation.

3.2 An Expression for the First Return Map

Let I := [−1/2,1/2]. Combining equations (6) with the effect of the rotation composed
with the expansion and the translation, we obtain that f̃ must have the form

f̃ (x, y) = (
fRo(x), gRo(x, y)

)

where fRo : I \ {0} → I and gRo : (I \ {0}) × I → I are given by

fRo(x) =
{

f1(x
�) if x < 0,

f0(x
�) if x > 0,

with fi = (−1)iρ · x + di, i ∈ {0,1}, and

gRo(x, y) =
{

g1(x
�, y · xβ) if x < 0,

g0(x
�, y · xβ) if x > 0,

(10)

where g1|I− × I → I and g0|I+ × I → I are suitable affine maps. Here I− = [−1/2,0),
I+ = (0,1/2]. Note that conditions (f1)–(f5) below determine the precise form of the con-
stants di .

3.2.1 Properties of the Map gRo

Observe that by construction, gRo in (9) is piecewise C3. Moreover, we have the following
bounds on its partial derivatives:

(a) For all (x, y) ∈ 	∗, x > 0, we have ∂ygRo(x, y) = xβ . As β > 1, |x| ≤ 1/2, there is
0 < λ < 1 such that

|∂ygRo| < λ. (11)

The same bound works for x < 0.
(b) For all (x, y) ∈ 	∗, x �= 0, we have ∂xgRo(x, y) = β · xβ−�. As β − � > 3 and |x| ≤ 1/2,

we get

|∂xgRo| < ∞. (12)

Item (a) above implies that the map f̃ = (fRo, gRo) is uniformly contracting on the leaves
of the foliation F s : there is C > 0 such that
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Fig. 3 Possible Rovella maps

(��) if γ is a leaf of F s and x, y ∈ γ , then dist(f̃ n(x), f̃ n(y)) ≤ λn · C · dist(x, y)

where λ can be chosen as the one given by (11).

3.2.2 Properties of the One-dimensional Map fRo

Next we outline the main features of fRo.
The following properties are easily implied from the construction of f̂ :

(f1) By (10) and the way T± is defined, fRo is discontinuous at x = 0. The lateral limits
fRo(0±) do exist, fRo(0±) = ± 1

2 ,
(f2) fRo is C3 on I \ {0}. As β > � + 3, we get limx→0+ DfRo(x) = 0 = limx→0− DfRo(x),

and the order of fRo at x = 0 is � − 1 > 0.
By the convexity properties of fRo we then obtain that

DfRo(x) > 0 for all x ∈ I \ {0}.
(f3) maxx>0 DfRo(x) = DfRo(1), maxx<0 DfRo(x) = DfRo(−1).

(f4) −1 and 1 are pre-periodic repelling points for fRo.
(f5) fRo has negative Schwarzian derivative: i.e., 1/

√|DfRo| is convex on I− and I+.

We say that a map of the interval f : I → I is a Rovella map if it satisfies the properties
(f1)–(f5) above. We denote this class of maps by FR . We refer to a Rovella map which is
topologically conjugate to the doubling map as a full Rovella map.

3.2.3 A Rovella Attractor is Partially Hyperbolic

A compact invariant set � ⊂ M is partially hyperbolic if the tangent bundle T�M splits into
a continuous sum of sub-bundles E ⊕ F , Df̂s -invariant, with E uniformly contracting, F

contains the flow-direction [f̂ ] and there are 0 < λ < 1 and c > 0 such that for all s > 0 and
each x ∈ �

∥∥∥Df̂s | Es
x

∥∥∥ ·
∥∥∥Df̂−s | Ecu

f̂s (x)

∥∥∥ < cλs. (13)

It follows from the construction and condition (3) on the eigenvalues at the origin, that
a Rovella attractor is partially hyperbolic. In particular, besides the existence of the stable
(uniformly contracting) foliation F s , there is a centre-unstable C1 foliation F cu.

3.2.4 Projection to the Interval

Notation: From here on it will often be convenient to use the notation Ĩ = 	 (recall I =
[−1/2,1/2]) and Î = B, the domain of the Rovella flow constructed above.

The intersection of the foliations F s and F cu with the cross section Ĩ induce a coordinate
system (x, y) on Ĩ , i.e., any point in Ĩ can be expressed as (x, y) where for all small ε, all
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points (x + ε′, y) for |ε′| < ε are in the same unstable leaf as (x, y), and similarly (x, y + ε′)
are in the same stable leaf as (x, y).

We define the map ι : Ĩ → I as ι(x, y) = x. Since our map f̃ preserves the stable folia-
tion, (I, f ) is a factor of (Ĩ , f̃ ). That is, f ◦ ι = ι ◦ f̃ . To see this, let (x, y) ∈ Ĩ and suppose
that (x ′, y ′) ∈ Ĩ is such that f̃ (x, y) = (x ′, y ′). From the definition of f , we have x ′ = f (x).
Then we compute

f ◦ ι(x, y) = f (x) = ι(f (x), y ′) = ι ◦ f̃ (x, y).

4 C2 Cusp Maps

As in the previous section, given a Rovella map f̂ , if we take Poincaré sections twice then
the study of the flow reduces to the study of one-dimensional maps. We will shortly define
a wider class of one-dimensional maps which contains this class (and so the corresponding
class of flows contains Rovella flows). First we give notation for one-sided derivatives of an
interval map. If A ⊂ R and f : A → R then for x ∈ A,

D−f (x) := lim
y↗x

f (x) − f (y)

x − y
and D+f (x) := lim

y↘x

f (x) − f (y)

x − y

are the left and right derivatives at x respectively, provided the limits exist.

Definition f : ⋃j Ij → I is a non-singular cusp map if there exist constants C,α > 1 and
a finite collection {Ij }j of disjoint open subintervals of I such that

(i) for all x, y ∈ Ij we have |Dfj(x) − Dfj(y)| < C|x − y|α ;
(ii) D+f (aj ), D−f (bj ) exist and are equal to 0.

We denote the set of points aj , bj by Crit.

Dobbs [17] considered maps of this type, although he also allowed the maps to have some
types of singularities at the boundaries of Ij . Note that the Lorenz-like maps considered in
[16] are a subset of the cusp maps considered by Dobbs, but with extra expansion conditions.

Remark 2 Notice that if for some j , bj = aj+1, i.e., Ij ∩ Ij+1 intersect, then f may not con-
tinuously extend to a well defined function at the intersection point bj , since the definition
above would then allow f to take either one or two values there. So in the definition above,
the value of fj (aj ) is taken to be limx↘aj

fj (x) and fj (bj ) = limx↗bj
fj (x), so for each j ,

fj is well defined on Ij .

In this paper we will restrict to a particular subset of this class. We let F be the class of
non-singular cusp maps with

(3) negative Schwarzian (i.e., 1/
√|Df | is convex on each Ij ).

This condition rules out the singularities considered by Dobbs. Moreover, it is clear that the
class FR of Rovella maps described in the previous section is included in F . We let Fac ⊂ F
denote the class of maps f ∈ F which have an acip μac with positive Lyapunov exponent
and which has density with respect to Lebesgue in Lp for some p > 1. Note that maps in F̂R

as well as the non-singular maps in [16] are in F̂ac . This can be derived for example from
[15, Lemma 2.2] and the exponential decay shown in [16, 29].

Next we introduce the class of flows we shall deal with:
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Definition The set F̂ is the class of flows on Î which give rise to a Poincaré map on Ĩ

which is uniformly contracting in the vertical direction, the return time of (x, y,1) is of
order − log |x| (as in (5)) and the map induced in the horizontal coordinate is in F . The set
F̂ac is defined similarly.

The study of the potential ϕ̂t as in (1) for maps in F̂ reduces to the study of potentials ϕt

as in (2). In order to prove the existence of equilibrium states for these potentials we need to
further restrict our class to maps with good expansion properties. Note that our conditions
are much weaker than those required for Rovella maps.

We define

λM = λM(f ) := sup{λ(μ) : μ ∈ M}, λm = λm(f ) := inf{λ(μ) : μ ∈ M}.
Then for f ∈ F we let

t− := inf{t : p(t) > −λMt} and t+ := sup{t : p(t) > −λmt}. (14)

Remark 3 The arguments of [39] can be adapted to show that if f ∈ F then λm ≥ 0. This
implies that t+ > 0. If f ∈ Fac then by definition the acip has positive Lyapunov exponent.
Therefore, as in [18, Theorem 3], see also [27, Theorem 3], μac is an equilibrium state for
− log |Df | and moreover t+ ≥ 1.

Since λM ≤ supx∈I log |Df (x)| < ∞ for f ∈ F , we also have t− < 0. Note that if t− >

−∞ then p is linear for all t ≤ t−. Similarly, if t+ < ∞ then p is linear for all t ≥ t+.

The first theorem gives equilibrium states for our systems. In the context of multimodal
maps this theory was first considered in [11], later extended for some cases by [37], and
then for more general cases in [12, 13] and in complete generality in [24]. The following
theorem is proved in the Appendix of [24]. We point out that this theorem was proved using
a special class of inducing schemes which are compatible with our equilibrium states. One
good property, which follows from negative Schwarzian derivative, is that these schemes
also have bounded distortion. The expanding interval maps coming from the expanding
Lorenz flow do not have negative Schwarzian derivative so new tools would have to be used
to prove an analogous theorem in that case.

Theorem 1 Let f ∈ F . Then for all t ∈ (t−, t+) there is a unique equilibrium state μt for
ϕt . Moreover,

(1) h(μt ) > 0;
(2) the map t �→ p(t) is C1 in (t−, t+);
(3) if all c ∈ Crit are not periodic or preperiodic then t− = −∞.

We next consider the Lyapunov spectrum. Given f ∈ F , we define the pointwise Lya-
punov exponent at x ∈ I as

λ(x) := lim
n→∞

1

n
log |Df n(x)|,

if the limit exists. For α ∈ R, we let

J (α) :=
{
x ∈ I : λ(x) = α

}
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and

J ′ :=
{
x ∈ I : the limit lim

n→∞
1

n
log |Df n(x)| does not exist

}
.

The unit interval can be decomposed in the following way (the multifractal decomposition),

I = J ′ ∪
(⋃

α

J (α)

)
.

As in Sect. 2, the function that encodes this decomposition is called the multifractal spec-
trum of the Lyapunov exponents and it is defined by

Lf (α) := dimH (J (α)).

This function was studied by Weiss [48] in the context of Axiom A maps.
As in the usual theory, if p(t) is C1 at t ∈ R and there exists an equilibrium state μt for

−t log |Df | then Dp(t) = −λ(μt ). Let

α1 := D+p(t−) and α2 := D−p(t+). (15)

The following is proved as in [25].

Theorem 2 Let f ∈ Fac . Then for all α ∈ (α1, α2), the Lyapunov spectrum satisfies the
following relation

Lf (α) = 1

α
inf
t∈R

(p(t) + tα) = 1

α
(p(tα) + tαα) = h(μtα )

α
,

where tα is such that Dp(tα) = −α. Moreover, Lf is C1 in (α1, α2).

Remark 4 In the case of the quadratic Chebyshev map, α1 = α2, so the above theorem is
empty in this case. This fact is shown via the conjugacy to the doubling map. Moreover,
there are only two possible Lyapunov exponents, one corresponding to the repelling fixed
point in ∂I and one corresponding to the acip. The former corresponds to a set of Hausdorff
dimension 0 and the latter to a set of Hausdorff dimension 1. It can also be shown that
α1 = α2 for a full Rovella map.

Remark 5 As in Remark 3, if f ∈ Fac then t− < 0 and t+ ≥ 1. Hence the interval (α1, α2)

contains the interval (λ(μac), λ(μmax)] where μac is the acip (the equilibrium state for
−t log |Df | for t = 1) and μmax is the measure of maximal entropy (this can be thought
of as the equilibrium state for −t log |Df | for t = 0).

5 Thermodynamics of Flows

5.1 Thermodynamics of Suspension Flows

We will show that for certain natural potentials for the contracting Rovella flow, we can
prove an equivalent of Theorem 1. Given the Rovella flow f̂ = (f̂s)s≥0 on Î ⊂ R

3, as shown
Sect. 3, we can take a 2 dimensional Poincaré section Ĩ ⊂ R

3 and get the first return map
f̃ = f̂r : Ĩ → Ĩ where r is the return time of a point in Ĩ to Ĩ .
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We can treat the Rovella flow as a semiflow over Ĩ . We will describe the abstract setup
for semiflows. For more background on this general setup we refer to [3] which describes
the simple relation between the semiflow and the map on the base which the semiflow is
taken over. Much of what follows is very similar to thermodynamic formalism in the setting
of Anosov flows, see [10, 14]. However, the singularity causes some difficulties, creating
some non-uniform hyperbolicity. For some information on such systems, but principally for
SRB measures, see [47]. For related recent work on the thermodynamics of semiflows over
Countable Markov Shifts to prove our results see [7].

Suppose that f : X → X is a dynamical system. Let the roof function ř : X → [0,∞) be
a continuous function and consider the space:

X̌ := {(x, s) ∈ X × R : 0 ≤ s ≤ ř(x)}/ ∼,

where (x, ř(x)) ∼ (f (x),0) for every x ∈ X. The suspension semiflow f̌ = (f̌s)s≥0 over f

with roof function ř is defined as

f̌s(x, u) := (x,u + s) if u + s ∈ [0, ř(x)].

The relevant class of measures here is

M(f, ř) :=
{
μ ∈ M(f ) :

∫
ř dμ < ∞

}
.

It is shown in [3] that if μ is an f -invariant measure, possibly infinite, and
∫

ř dμ < ∞ then
the product measure μ×m, where m is Lebesgue, is f̌ -invariant. Indeed when ř is bounded
away from zero there is a canonical identification between M(f̌ ) and M(f, r): the map
ι̌ : M(f, ř) → M(f̌ ) given by

ι̌(μ) := (μ × m)|X̌
(μ × m)(X̌)

(16)

is a bijection.
The entropy of a flow (X̌, f̌ , μ̌) can be defined by the metric entropy of the corresponding

time 1 map. Abramov [1] proved that for semiflows, this is the same as

h(f̌ , μ̌) = h(f, μ̌ ◦ ι̌−1)
∫

r d(μ̌ ◦ ι̌−1)
. (17)

We will take this definition.
Given a potential ϕ̌ : X̌ → R, we define the corresponding potential �ϕ̌ : X → R as

�ϕ̌(x) :=
∫ ř(x)

0
ϕ̌(x, s) dt.

By the identification of M(f̌ ) and M(f, ř), coupled with the Abramov formula, we can
write

P (f̌ , ϕ̌) = sup

{
1

∫
ř dμ

(
h(f,μ) +

∫
�ϕ̌ dμ

)
: μ ∈ M(f, ř) and −

∫
�ϕ̌ dμ < ∞

}
.
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Remark 6 If the underlying system (X,f ) is a countable Markov shift, under certain
smoothness conditions on the potential, a Variational Principle for the pressure was proved
in [7]. We could extend that theory to the case of the Rovella flow with the potentials given
below. However, since this isn’t required to prove our results, we will not do the computa-
tions here.

We now return to the map f̃ : Ĩ → Ĩ . As in [3], there is a map between the suspension
flow and the actual flow:

p̌ : Ǐ =
{
(x, s) ∈ Ĩ × R : 0 ≤ s ≤ ř(x)

}
/ ∼→ Î .

We can define entropy of a measure μ̂ ∈ M(f̂ ) as h(μ̂ ◦ p̌). Similarly we can define the
pressure P (f̂ , ϕ̂) as P (f̌ , ϕ̌).

5.2 The Relation Between the one and Two Dimensional Systems

Later we will relate equilibrium states for f with those for f̃ . This involves comparing the
free energies of measures for f with those for f̃ , so we will need a relation between M(f )

and M(f̃ ). We will use ideas from [5] to help with this. Note that in that paper the authors
considered expanding rather than contracting Lorenz flows, but many of those ideas carry
through to our contracting case. As in [5, Corollary 5.2], there is an injection from M(f )

to M(f̃ ). Moreover, given μ̃ ∈ M(f̃ ) the measure μ̃ ◦ ι−1 is clearly f -invariant. In the
following lemma we show that in fact we have a bijection between M(f ) and M(f̃ ).

Lemma 1 There is a bijection p̃ : M(f ) → M(f̃ ). Moreover, ι◦ p̃ is the identity on M(f )

and p̃ and p̃−1 take ergodic measures to ergodic measures.

Proof Given x ∈ I , we let ξx := {(x, y) : y ∈ I }. This is a leaf of the F s the stable foliation
of Ĩ . For any potential ϕ̃ : Ĩ → R, we define

ϕ−(x) = inf
y∈ξx

ϕ̃(x, y) and ϕ+(x) = sup
y∈ξx

ϕ̃(x, y).

Following [5, Sect. 5.1], we can show that if μ ∈ M(f ) then there is a unique measure
μ̃ ∈ M(f̃ ) such that for any continuous function ϕ̃ : Ĩ → R, the limits

lim
n→∞

∫ (
ϕ̃ ◦ f̃ n

)

−
dμ and lim

n→∞

∫ (
ϕ̃ ◦ f̃ n

)

+
dμ

exist, are equal, and coincide with
∫

ϕ̃ dμ̃. This determines the map p̃ : M(f ) → M(f̃ ),
which is injective. We will show that it is in fact a bijection between M(f ) and M(f̃ ).

The map ι gives us a natural way to get from M(f̃ ) to M(f ). The lemma will be proved
if we can show that given μ̃ ∈ M(f̃ ), for the measure ν := μ̃ ◦ ι−1 ∈ M(f ) we have ν̃ = μ̃

(i.e. p̃ ◦ ι is the identity on M(f̃ )).
As in [5, Corollary 5.2], we have, for a continuous ϕ̃ : Ĩ → R and ν̃ := p̃(ν),

∫
ϕ̃ dν̃ = lim

n→∞

∫ (
ϕ̃ ◦ f̃ n

)

−
dν = lim

n→∞

∫
(ϕ̃ ◦ f̃ n)− d(μ̃ ◦ ι−1)

= lim
n→∞

∫ (
inf
y′∈I

ϕ̃ ◦ f̃ n(x, y ′)
)

dμ̃(x, y)
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since the integrand is independent of y. Because
∫

ϕ̃ ◦ f̃ n dμ̃ = ∫
ϕ̃ dμ̃, to complete the

lemma it suffices to show that increasing n makes

∣
∣∣
∣

∫ (
inf
y′∈I

ϕ̃ ◦ f̃ n(x, y ′)
)

dμ̃(x, y) −
∫

ϕ̃ ◦ f̃ n(x, y) dμ̃(x, y)

∣
∣∣
∣

arbitrarily small (this follows similarly when we replace inf by sup). Since f̃ is uniformly
contracting on each ξx by (��), and ϕ̃ is uniformly continuous, for any ε > 0, for all large n,

∣∣∣∣

(
inf
y′∈I

ϕ̃ ◦ f̃ n(x, y ′)
)

− ϕ̃ ◦ f̃ n(x, y)

∣∣∣∣ < ε,

for all (x, y) ∈ Ĩ . Therefore,

∣∣∣∣

∫ (
inf
y′∈I

ϕ̃ ◦ f̃ n(x, y ′)
)

dμ̃(x, y) −
∫

ϕ̃ ◦ f̃ n(x, y) dμ̃(x, y)

∣∣∣∣ < ε.

We can also replace inf with sup here. Hence ν̃ = μ̃ as required.
Given an ergodic measure μ̃ ∈ M(f̃ ), it is clear that p̃−1(μ̃) = ι−1(μ̃) is ergodic. Con-

versely, given an ergodic measure μ ∈ M(f ), the ergodicity of p̃(μ) follows as in [5, Corol-
lary 5.5]. �

5.3 Relation Between Thermodynamics of Systems on the Interval, Square and Flow

For a potential ϕ : I → R, we define ϕ̃ : Ĩ → R to be ϕ̃(x, y) = ϕ(x). Conversely, if ϕ̃ : Ĩ →
R is a potential depending only on the first coordinate then we define ϕ̃1(x) := ϕ̃(x, y).

Lemma 2 Given a potential ϕ : I → R, μ is an equilibrium state for (I, f,ϕ) if and only if
μ̃ is an equilibrium state for (Ĩ , f̃ , ϕ̃).

Proof Suppose that μ̃ is an equilibrium state for ϕ̃. Then

h(f̃ , μ̃) +
∫

ϕ̃ dμ̃ = P (f̃ , ϕ̃).

We let μ be the projection of μ̃ to I . It is easy to show that
∫

ϕ̃ dμ̃ = ∫
ϕ̃1 dμ and h(f̃ , μ̃) =

h(f,μ). Then

h(f,μ) +
∫

ϕ̃1 dμ = P (f̃ , ϕ̃).

As in [10], P (f̃ , ϕ̃) = P (f, ϕ̃1), so μ is an equilibrium state for ϕ̃1.
To complete the proof of the lemma, we observe that the above computations also im-

ply that if μ ∈ M(f ) is an equilibrium state for ϕ, then μ̃ = p̃(μ) is an equilibrium state
for ϕ̃. �

The following lemma gives us candidate equilibrium states for the Rovella flow.

Lemma 3 For each t ∈ (t−, t+) the equilibrium state μt for ϕt , projects to a measure μ̃t ∈
M(f̃ , r).
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Proof The fact that μt projects to an invariant measure μ̃t ∈ M(f̃ ) follows as in Lemma 2.
It remains to show that

∫
r dμ̃ < ∞. By (5), s(x) � log |x − c|. By part (ii) of the defini-

tion of cusp maps, the integrability of log |Df | implies the integrability of r . The fact that
log |Df | ∈ L1(μt ) is clear from the definitions of F and μt . �

Next we extend to the flow. Any f̃ -invariant measure μ̃ on Ĩ can be identified with a
f̌ -invariant measure μ̌ = ι̌(μ̃) where ι̌ is defined in (16). Note by [5, Corollary 5.10] if
ν ∈ M(f̃ ) is ergodic then ν̌ ∈ M(f̌ ) is ergodic. We define the map

p̂ : M(f )
p̃−→ M(f̃ )

ι̌−→ M(f̌ )
p̌−→ M(f̂ ).

Given μ ∈ M(f ), let μ̂ := p̂(μ).

Lemma 4 Suppose that ϕ̂ : Î → R gives a potential ϕ̃ = �ϕ̂ : Ĩ → R which depends only
on the first coordinate. We set ϕ(x) = ϕ̃(x, y) for any y ∈ I . Then μ is an equilibrium state
for (I, f,ϕ) if and only if μ̂ is an equilibrium state for (Î , f̂ , ϕ̂).

Proof This follows as in [14, Theorem 4.4]: We may assume that P (ϕ) = 0. So

0 = P (ϕ) = h(μ) +
∫

ϕ dμ.

Then by Lemma 2 the measure μ̃ ∈ M(f̃ ) has

0 = P (ϕ̃) = h(μ̃) +
∫

ϕ̃ dμ̃.

We let μ̂ = p̂(μ̃). Then by Lemma 3 and the Abramov formula,

h(μ̂) +
∫

ϕ̂ dμ̂ = h(μ̃) + ∫
ϕ̃ dμ̃

∫
r dμ̃

= 0.

This computation also shows that P (ϕ̂) = 0. Hence μ̂ is an equilibrium state for ϕ̂. The
converse argument follows similarly. �

Proposition 1 For ϕ̂t and ϕt as in (1) and (2) respectively, μ ∈ M(f ) is an equilibrium
state for (I, f,ϕt ) if and only if μ̂ = ι̂(μ) is an equilibrium state for (Î , f̂ , ϕ̂t ).

Proof Lemma 4 gives this immediately. �

Proof of Theorem A Proposition 1 added to Theorem 1 completes the proof. �

5.4 Lyapunov Spectrum for the Flow: Proof of Theorem B

To prove Theorem B, first note that given x ∈ I with λ(x) = α, all points (x, y) ∈ ξx must
lie in K(α). Moreover,

{
f̌s(x, y,1) : y ∈ ξx and s ∈ [0, r(x, y, z))

}
⊂ K(α).
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Therefore, if we view f̂ as a suspension flow over (Ĩ , f̃ ) with roof function r ,

dimH (K(α)) = dimH (K(α) ∩ Ĩ ) + 1 = dimH (J (α)) + 2 = L(α) + 2.

Theorem 2 then gives L in terms of the pressure.
To complete the proof of Theorem B we need to check that the map from the suspension

flow model to the flow f̂ does not distort things too much; in particular is locally bilipschitz.
This allows us to assert the first equality above. In [34] they refer to (x, y, z) ∈ Î as a reg-
ular point if there exists (x̃, ỹ, z̃) ∈ Ĩ and a neighbourhood U0 such that f̂s : U0 → Us is a
diffeomorphism where Us is a neighbourhood of (x̃, ỹ, z̃). Note that any point in � ∩ Ĩ is
regular.

For any regular point (x, y, z), there a neighbourhood of (x̃, ỹ, z̃) in Î such that the flow
by f̂ to the corresponding neighbourhood of (x, y, z) is conjugated by p̌ to the parallel flow
on a cube. By the Tubular Flow Theorem of [34, Chap. 2], this conjugacy is bilipschitz in
this neighbourhood. This proves Theorem B.
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thank the referee for useful suggestions.
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